
Chapter 11
Implementation and Interaction of

Estimators and Classifiers

Jon Hamkins and Hooman Shirani-Mehr

In each of the previous chapters, a method was proposed to estimate or
classify a given signal parameter based on observations of the received sig-
nal. When tractable, the estimation or classification was derived from the
maximum-likelihood (ML) principle, i.e., the parameter was estimated in the
way that would best explain the observations. When ML solutions were im-
practical, reduced-complexity approximations to the ML solutions, or ad hoc
estimators/classifiers were proposed.

In this final chapter, we explain how the algorithms of the previous chapters
may be incorporated into a single, practical, and operational autonomous radio.
This chapter is the bookend to Chapter 1, once again addressing the overall ar-
chitecture of the autonomous radio and the interactions of its components. In
particular, we summarize the algorithms that result from the analysis of the ear-
lier chapters, show their interdependence, and construct an explicit sequence of
coarse and fine estimation/classification that accomplishes all the functions of an
autonomous radio. We have used the technique outlined in this chapter to write
a software implementation of an autonomous radio that successfully identifies
and processes an Electra-like signal with unknown attributes.

The chapter is organized as follows. In Section 11.1, we review the conven-
tional approach to converting continuous-time signal processing to the discrete-
time processing appropriate for a software implementation. In Section 11.2, we
review a sequence of estimator/classifier actions that provides the first, coarse
estimates of signal parameters, and a technique to refine the estimates by feeding
back the coarse estimates to all the estimator modules. The individual estima-
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392 Chapter 11

tion/classification modules are discussed in the order in which they process the
signal, including modulation index estimation in Section 11.3.1.

11.1 Signal Model
The complex baseband representation of the received signal is given by

Eq. (1-8), which we restate here:

r̃(t) =
√

2Pd

∞∑
l=−∞

dl(t)p[t− lT − εT ]ej[ωrt+θc] +
√

2Pce
j[ωrt+θc(t)] + ñ(t) (11 1)

In order to process this continuous-time signal digitally, we sample the signal at
regular time intervals, separated by Ts seconds.

Although there is nothing new about sampling a continuous-time signal, it
is helpful to be explicit about the variance of the noise samples, which is re-
lated to the bandwidth of Eq. (1-1). If we follow the convention we have used
throughout the monograph that ñ(t) =

√
2
(
nc(t)+jns(t)

)
and that each of nc(t)

and ns(t) has two-sided power spectral density (PSD) N0/2, we quickly see that
a sample ñ(kTs) will have variance Rñ(0) = 2N0δ(0) per dimension, which is not
bounded.

Instead, following standard practice [1], we implicitly assume that the pass-
band signal r(t) in Eq. (1-1) can be sent through an ideal passband filter that
introduces negligible distortion to the signal but which eliminates the noise fre-
quency components outside the passband. If the filter has bandwidth ωs and is
centered at the carrier ωc, then the passband noise n(t) at the filter output has
PSD

Sn(ω) =
{

N0/2, |ω − ωc| ≤ ωs/2 or |ω + ωc| ≤ ωs/2
0, otherwise

(11 2)

In complex baseband, the PSD of each of nc(t) and ns(t) is given by

Snc(ω) = Sns(ω) =
{

N0/2, |ω| ≤ ωs/2
0, |ω| > ωs/2 (11 3)

(Note that the PSD of each of
√

2nc(t) and
√

2ns(t) is twice this amount.)
If ωs = 2π/Ts, then based on the above, each passband noise sample n(kTs)
has variance N0/Ts, and each complex baseband noise sample ñ(kTs) also has
variance N0/Ts in each dimension.

Thus, we model the discrete-time complex baseband signal as
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r̃[k] �=
√

2Pd

∞∑
l=−∞

dk(kTs)p[kTs − lT − εT ]ej[ωrkTs+θc]

+
√

2Pce
j[ωrkTs+jθc(kTs)] + ñ(kTs) (11 4)

where each noise complex sample ñ(kTs) has variance N0/Ts per dimension.
After reception of the baseband signal in Eq. (11-4), the signal is separated

into its data-modulated and residual carrier components. We assume that, when
a residual carrier signal is used, its spectrum is distinct enough from that of the
data-modulated portion of the signal that these two components may be ideally
separated. A high-pass filter extracts the data-modulation component, while a
low-pass filter (LPF) extracts the residual carrier component:

r̃d[k] �=
√

2Pd

∞∑
l=−∞

dk(kTs)p[kTs − lT − εT ]ej[ωrkTs+θc] + ñ′(kTs) (11 5)

r̃c[k] �=
√

2Pce
j[ωrkTs+jθc(kTs)] + ñ′′(kTs) (11 6)

The complex process ñ′(kTs) is the same as ñ(kTs) except that it has had a
notch of spectrum removed. Generally the notch is small relative to the overall
bandwidth, and so the complex sample ñ′(kTs) can be assumed to have variance
N0/Ts per dimension, as before.

The situation for ñ′′(kTs) is a little more complicated. If the low-pass band-
width ωlp satisfies ωlp < 2π/Ts, then sampling at rate Ts results in a correlated
ñ′′(kTs) noise sequence. To avoid this situation, we may sample the residual
carrier component at a different frequency, every Tc = ωlp/(2π) seconds. Re-
defining rc[k] in this way results in

r̃c[k] �=
√

2Pce
j[ωrkTc+jθc(kTc)] + ñ′′(kTc) (11 7)

where now {ñ′′(kTc)} is an uncorrelated complex noise sequence with variance
N0/Tc per dimension.

11.2 Interaction of Estimator and Classifiers
Chapter 1 described a sequence of operations that accomplishes the task of

estimating all the signal parameters shown in Table 11-1. This order is summa-
rized in Fig. 1-3. We now become more explicit about the inputs and outputs
from each of the modules and how they are connected.
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Table 11-1. Signal parameters to be estimated
and classified.

Notation Description

β Modulation index

ωr Residual frequency

T Symbol duration

p(t) Data format/pulse shape

R Signal-to-noise ratio

ε Fractional symbol timing

θc Carrier phase

M Modulation order (in M -PSK signals)

The autonomous radio begins in a coarse estimation phase in which the
signal flow is unidirectional, without feedback. In coarse estimation, shown in
Fig. 11-1, each estimation module has parameter estimates from the modules to
its left, but no parameter estimates from the modules on its right. For example,
the modulation index estimator operates without knowledge of the modulation
type. Of course, every module has access to the r̃[k] observables. Thus, in coarse
estimation we employ the algorithms that require the least parameter informa-
tion, which results in worse performance as compared to conventional receivers
that rely on known attributes of the signal.

After the coarse estimation phase, estimates of all signal parameters are avail-
able to all blocks in the subsequent iterations. Therefore, the better-performing
estimation techniques can be used in the fine estimation phase. For example,
the modulation index estimator can make use of the modulation order M̂ , the
data-transition tracking loop (DTTL) can make use of θ̂c to operate coherently,
and so on. In the fine estimation phase, the modules can iteratively update their
estimates until convergence takes place.

A complete functional diagram of both the coarse and fine estimation phases
is shown in Fig. 11-2. In coarse estimation, the switches are in the “coarse” po-
sition. After all parameter estimates are available, the switches may be placed
in the “fine” position. The received discrete-time signal is shown on the left.
It enters the modulation index classifier and then, depending on the result, the
appropriate structure is used to correct any residual frequency. Following this,
the residual carrier (if any is detected) and data components are separated using
low- and high-pass filters, and the joint estimator for data rate, data format,
signal-to-noise ratio (SNR), and coarse symbol synchronization (sync) is run.
These parameters, along with the carrier and data signal, are fed to the carrier
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Fig. 11-1.  Signal flow in coarse estimation.
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sync, fine symbol sync, and modulation classifier structures. Depending on the
modulation index, one of several carrier loops may be chosen. When carrier
lock is detected, the coherent versions of any of the estimators may be used, as
indicated in Fig. 11-2.

11.3 Coarse and Fine Estimators/Classifiers
In this section, we summarize the operation of the individual modules as they

operate in coarse and fine modes.

11.3.1 Modulation Index Estimation

In the coarse estimation phase, the modulation index estimator requires no
parameter estimates, other than the minimum symbol period T ∗. It directly
estimates the carrier and data powers by integrating over a sufficient epoch. In
the fine estimation phase, it may operate coherently and use knowledge of the
date rate, modulation type, symbol boundaries, and pulse shape to improve its
performance.

The coarse estimator is given by Eq. (3-49), which becomes, after transform-
ing to discrete-time,
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Fig. 11-2.  A more detailed functional diagram of the autonomous radio architecture.
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β̂ = cot−1

⎡
⎢⎢⎢⎣

√√√√√√
2

[(∑K′−1
k=0 yc[k]

)2

+
(∑K′−1

k=0 ys[k]
)2

]

K ′ ∑K′−1
k=0

[(
yc[k] − yc[k − T ∗/Ts]

)2 +
(
ys[k] − ys[k − T ∗/Ts]

)2
]

⎤
⎥⎥⎥⎦

(11 8)

where K ′ = KT ∗/Ts, and yc[k] = yc(kTs) and ys[k] = ys(kTs), which are defined
in Eq. (3-42).

In the fine estimation phase, we may replace T ∗ in Eq. (11-8) by the esti-
mate T̂ at the output of the data rate estimator. Also, timing estimates will
allow us to define yc and ys as in Eq. (3-32) instead of as in Eq. (3-42), i.e., with
the symbol-timing offset removed, which improves the fidelity of summations in
Eq. (11-8).

If the modulation type is estimated to be binary phase-shift keying (BPSK)
in the coarse phase, we may improve the modulation index estimate in the fine
estimation phase by using the modulation index estimator for coherent BPSK
in Eq. (3-9), which in discrete-time becomes

cot β̂ =
∑KT̂/Ts−1

k=0 ys[k]∑K−1
k=0

∣∣∣∑(k+1)T̂ /Ts

l=kT̂/Ts
yc[l]p

[
l − kT̂ /Ts

]∣∣∣ (11 9)

If the carrier tracking loop is not yet in lock, then the noncoherent BPSK mod-
ulation index estimator from Eq. (3-39) may be used. If the modulation type is
a higher-order M -ary phase-shift keying (M -PSK), we may use a discrete-time
version of Eq. (3-29).

11.3.2 Frequency Correction

Frequency correction is performed in the coarse estimation phase only if the
modulation index estimator determines that the signal contains a residual car-
rier (θ̂c < π/2). In that case, the technique of Section 4.1 can be applied. The
scheme for a residual carrier signal is illustrated in Fig. 11-3.

In the fine estimation phase, when the symbol rate 1/T , fractional symbol
timing ε, and pulse shape p(t) are known, the techniques of Section 4.2 or Sec-
tion 4.3 may be used. Figure 11-4 illustrates one of these schemes. The input to
the block diagram is the output of a matched filter, which requires prior knowl-
edge of T , M , ε, and p(t).

Examples of the acquisition and tracking performance are illustrated in
Fig. 11-5. In Fig. 11-5(a), there is no residual frequency, and this is tracked
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Fig. 11-3.  Closed-loop frequency correction for a residual

carrier signal (NCO = numerically controlled oscillator).
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quite readily. In Fig. 11-5(b), the residual frequency is a half percent of the
sample rate, and we see a short acquisition period followed by active tracking.
In Fig. 11-5(c), the residual frequency is one percent of the sampling rate, and
we see a longer acquisition period.

11.3.3 Joint Estimation of Data Rate, Data Format, SNR,
and Coarse Symbol Timing

As shown in Fig. 11-2, the joint estimator for data rate, data format, SNR,
and coarse symbol synchronization operates in the same way during both coarse
and fine estimation phases. This is a consequence of the fact the the split-
symbol moments estimator (SSME) for SNR estimation is independent of both
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Fig. 11-5.  Dynamic response of the frequency-

tracking loop for a signal with SNR = 10 dB, θc = π/4: 

(a) ωrTs 
/(2π) = 0, (b) ωrTs 

/(2π) = 0.005, and (c) ωrTs 
/(2π) 

= 0.01.

(a)

(b)

(c)
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the M -PSK modulation order and the carrier phase θc. This module takes the
frequency-corrected version of r̃[k] as input and produces T̂ , p̂(t), R̂, and ε̂ as
output.

Figure 11-6 illustrates an example of the performance of the SNR estimator,
assuming the residual frequency and symbol timing are known (ωr = 0 and
ε = 0). The simulated signal used BPSK modulation, a symbol period of
T = 15 µs, and a non-return to zero (NRZ) data format, also assumed known.
The asterisk on Fig. 11-6 represents the estimator output, while the line (corre-
sponding to x = y) is the desired output. With an observation of 100 samples,
the SNR estimator is seen to perform quite well for this example.

11.3.4 Modulation Classification

The various modulation classifiers discussed in Chapter 9 each require knowl-
edge of the data rate, pulse shape, and symbol timing in order to form a matched-
filter output, i.e., the single-sample per symbol statistic r̃n. That statistic is
obtained by summing up L received samples, where L is the ratio of the sample
rate to the symbol rate:

Fig. 11-6.  Example output from an SNR estimator.
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r̃n =
nL∑

k=(n−1)L+1

r̃d[k], n = 1, 2, · · · , N (11 10)

with r̃d[k] given by Eq. (11-5).
The normalized quasi-log-likelihood ratio (nqLLR) modulation classifier does

not need to know the SNR, which makes it a good candidate for modulation clas-
sification in the coarse estimation phase. However, the nqLLR classifier must
still wait for the data rate and symbol-timing estimates to become available for
Eq. (11-10) to be computed, at which point the SNR estimate is also available,
since it comes from the same joint estimator. Therefore, there is no advantage
in the coarse phase to using the nqLLR, even though in principle it requires less
knowledge about the signal attributes.

Instead, the modulation classification in the coarse estimation phase is ac-
complished with the quasi-generalized-likelihood ratio test (qGLRT), discussed
in Section 9.2.2. The qGLRT is based on the conditional-likelihood function
CLFM (θ), given by Eq. (9-9) evaluated at a best-available estimate of θc. As
shown in Chapter 9, this produces only a small loss compared to the ML classi-
fier, which computes a full-blown average over θc:

LFM =
M

2π

∫ 2π/M

0

CLFM (θ) dθ (11 11)

The estimate for θc is given by

θ̂(M)
c =

1
M

arg
N−1∑
n=0

r̃M
n (11 12)

For BPSK we have

θ̂(2)
c =

1
2

arg
N−1∑
n=0

r̃2
n (11 13)

and for quadrature phase-shift keying (QPSK) we have

θ̂(4)
c =

1
4

arg
N−1∑
n=0

r̃4
n (11 14)

and, thus, the qGLRT classifier metric is
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LR =
CLF2

(
θ̂
(2)
c

)

CLF4

(
θ̂
(4)
c

) (11 15)

If this is greater than unity, the modulation is declared to be BPSK; otherwise,
the modulation is declared to be QPSK.

Figure 11-7 illustrates an example comparing the ML, generalized likelihood
ratio test (GLRT), quasi-log-likelihood ratio (qLLR), and nqLLR modulation
classifiers, when discriminating BPSK from QPSK. The performance is mea-
sured by probability of misclassification, which is the probability of deciding
either BPSK or QPSK at the receiver when in fact the other modulation was
transmitted. In the example, the symbol SNR is Es/N0 = −4 dB, and perfect
residual frequency correction and symbol timing are assumed. As can be seen
from the bar chart, even for such a low SNR, correct classification can still be
accomplished about 90 percent of the time.

In the fine estimation phase, the phase tracking loop has locked onto the
carrier phase θc. Thus, we switch to the coherent ML modulation classifier,
which is the same as the qGLRT except that the phase estimate θ̂c coming from

Fig. 11-7.  Classification error probability of various 

classifiers for BPSK/QPSK, where Es /N0 = −4 dB, ε = 0, ωr = 0, 

using N = 100 observed symbols.
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the carrier tracking loop is used in place of the GLRT estimate. In the case of
BPSK/QPSK classification, Eq. (11-15) becomes

LR =
CLF2

(
θ̂c

)

CLF4

(
θ̂c

) (11 16)

11.3.5 Carrier Synchronization

As shown in Fig. 11-2, carrier synchronization takes several forms, depend-
ing on the modulation index and coarse/fine operation.

If the modulation index estimator has determined that there is a residual
carrier, then a phase-locked loop (PLL) may be used to lock onto the residual
carrier signal. The residual carrier itself is the output of a low-pass filter of the
received signal, which suppresses the data modulation (except for the portion of
the spectrum at zero frequency). When a residual carrier is present, the PLL
may be the best choice for carrier synchronization in the fine estimation mode
as well, but this depends on the SNR and the value of the modulation index. In
cases when the residual carrier is weak, a hybrid loop may outperform the PLL
alone in the fine estimation phase.

If the modulation index estimator has determined that the carrier is sup-
pressed, then the carrier synchronization in the coarse estimation phase relies on
a carrier loop with passive arms. As discussed in Chapter 8, such a loop uses
passive filters in each arm, so that the symbol timing and pulse shape need not
be known. A universal loop can be constructed that will work for all M -PSK
modulation orders up to some maximum Mmax. This is shown in Fig. 8-12 for
M ∈ {2, 4, 8}, where the in-phase (I) and quadrature (Q) arm filters can be imple-
mented with simple low-pass filters such as simple integrators. Since modulation
classification is not yet available to the carrier loop during the coarse phase, the
carrier loop begins in the coarse estimation phase configured for Mmax-PSK.

For suppressed carrier signals in the fine estimation phase, the switch for M

in Fig. 8-12 can be set according to the modulation classifier output, and the
passive arm filters can be replaced with matched filters that make use of the pulse
shape and symbol-timing estimates, which results in improved performance as
discussed in Chapter 8.

We now discuss the conversion of the passband continuous-time loops dis-
cussed in Chapter 8 to the discrete-time complex baseband loops suitable for a
digital implementation. First we will discuss the continuous model for tracking
a BPSK signal. For QPSK signals, the same approach applies.

Assume that the input to the loop is the BPSK suppressed carrier passband
signal r(t) in the form of
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r(t) = s(t) =
N∑

n=1

anp
[
t − (n − 1)T

]
sin (ωct + θc) + n(t) (11 17)

where an is random binary data corresponding to the nth transmitted BPSK
symbol taking on values ±1 with equal probability and for simplicity p(t) is
assumed to be a unit amplitude rectangular pulse. Let

ws (t) �= sin
(
ωct + θ̂c

)

wc (t) �= cos
(
ωct + θ̂c

) (11 18)

where θ̂c is the estimate of θc. Therefore, the nth transmitted BPSK symbol in
the interval (n − 1)T ≤ t ≤ nT is given by

U =
∫ nT

(n−1)T

ws (t) r (t) dt

Neglecting noise terms and double frequency terms results in

U ∝ cos
(
θc − θ̂c

)
(11 19)

Similarly,

V =
∫ nT

(n−1)T

wc (t) r (t) dt ∝ sin
(
θc − θ̂c

)

Let φ
�= θc − θ̂c. Then,

U ∝ cos (φ) (11 20)

V ∝ sin (φ) (11 21)

Now, consider r̃n [k], which is the input of the equivalent complex baseband,
discrete-time loop. Assuming perfect carrier frequency estimation (ωr = 0),

r̃n [k] =
1
L

ej[θn+θc] + ñn [k] (11 22)
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The estimated signal ˆ̃r is the output of the discrete-time voltage-controlled os-
cillator (VCO) and has the form

ˆ̃r = e−jθ̂c (11 23)

where θ̂c is the estimate of θc. From Eqs. (11-22) and (11-23), the multiplication
signal w̃n [k] has the form

w̃n [k] = r̃n [k] × ˆ̃r (11 24)

=
(

1
L

ej[θn+θc] + ñn [k]
)

e−jθ̂c (11 25)

=
1
L

ejθnej[θc−θ̂c] + ñn [k] e−jθ̂c (11 26)

Since ñ [k] and ñ [k] e−jθ̂c have the same statistical distributions, we may write

w̃n [k] =
1
L

ej(θn+φ) + ñn [k] (11 27)

The equivalent of integration in the continuous domain is summation in our
domain. Therefore, the integrators are replaced with summations. Also note
that, since we are dealing with complex signals, in order to extract the trigono-
metric functions (sine and cosine) of the signal angle, the loop requires extracting
the imaginary and real parts, respectively, of the signal w̃(k). Applying these
modifications results in the loops that are illustrated in Figs. 11-8(a) and 11-8(b),
where

S : ỹn =
nL∑

k=(n−1)L+1

x̃n [k]

Note that the loop filter is identical to the continuous case that is discussed
in Chapter 8. Hence, the transfer function of the loop filter has the form

F (s) =
1 + τ2s

τ1s
, τ1 � τ2 ⇒ (τ1 = 1, τ2 = 0.01) (11 28)
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Fig. 11-8.  Sampled implementation of a Costas-type

loop capable of tracking: (a) BPSK and (b) QPSK.
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Figures 11-9(a) and 11-9(b) illustrate the sample acquisition behavior of
each loop for a set of parameters. In each case, the phase error φ is shown as
a function of time measured in terms of the number of observed samples at the
receiver. As it is represented in the plots, the carrier phase tracking loop starts
operating after the frequency correction is performed on 1000 symbols.

As can be observed, the loops do not always lock at zero phase error (φ = 0).
The reason is that, in BPSK and QPSK, the lock points of the loops are where
sin(2φBPSK) = 0 and sin(4φQPSK) = 0, respectively, which result in an ambiguity
of π for BPSK and π/2 for QPSK. Figures 11-9(a) and 11-9(b) show constant
lines to indicate the other potential phases at which the carrier loop could lock.

11.3.6 Symbol Synchronization

In the coarse estimation phase, either the noncoherent cross-spectrum sym-
bol synchronizer (CSSS) or the noncoherent DTTL may be used to acquire the
symbol timing. The choice of which to use depends on the SNR, as discussed in
Chapter 10, with the CSSS being preferred at low SNR. For either synchronizer,
the symbol period and pulse shape must be known.
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Fig. 11-9.  Carrier synchronization loop performance:

(a) BPSK and (b) QPSK.

(a)

(b)
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In the fine estimation phase, a conventional coherent DTTL may be
used. The remainder of this section discusses the method by which discrete-
time matched-filter output samples are used by a DTTL. As discussed in the
section on modulation classification, the complex observables corresponding to
the matched-filter output at the time instants nL, where n = 1, 2, · · · , N , are
given by

r̃n =
nL∑

k=(n−1)L+1

r̃n [k], n = 1, 2, · · · , N (11 29)

Thus,

r̃n =
nL∑

k=(n−1)L+1

[
1
L

ej[ωrkTs+θn+θc] + ñ′
n [k]

]
(11 30)

Therefore, the observation vector r̃ = (r̃1, r̃2, · · · , r̃N ) for a sequence of N symbols
can be modeled as

r̃n = ej[ωrkTs+θn+θc] + ñ′
n, n = 1, 2, · · · , N (11 31)

where ñ′
n is a complex Gaussian random variable with mean zero and variance

σ
′2 per dimension.

Figures 11-10(a) and 11-10(b) provide a visualization of the derotation of
the signal constellation that takes place as a result of frequency and phase cor-
rection. The upper plot in each figure corresponds to the observation vector
r̃ = (r̃1, r̃2, · · · , r̃N ), where N = 100 and a non-zero frequency offset (ωr) was
introduced to the system, and the lower plot represents the frequency- and phase-
corrected version of r̃.
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Fig. 11-10.  Signal constellations for a signal with 

different modulations and the same parameters 

before and after frequency correction, with Es 
/N0 = 

20 dB: (a) BPSK and (b) QPSK.

(a)

(b)


